Friction force on slow charges moving over supported graphene.

نویسندگان

  • K F Allison
  • Z L Misković
چکیده

We provide a theoretical model that describes the dielectric coupling of a two-dimensional (2D) layer of graphene, represented by a polarization function in the random phase approximation, and a semi-infinite three-dimensional (3D) substrate, represented by a surface response function in a non-local formulation. We concentrate on the role of the dynamic response of the substrate for low-frequency excitations of the combined graphene-substrate system, which give rise to the stopping force on slowly moving charges above doped graphene. A comparison of the dielectric loss function with experimental high-resolution electron energy loss spectroscopy (HREELS) data for graphene on a SiC substrate is used to estimate the effects of damping rate and the local field correction in graphene, as well as to reveal the importance of phonon excitations in an insulating substrate. While the local field correction and linearly dispersing damping rate did not yield any important effects compared to the constant damping rate in graphene, a strong signature of the hybridization between graphene's pi plasmon and the substrate's phonon is found in both the HREELS spectra and the stopping force. A friction coefficient that is calculated for slow charges moving above graphene on a metallic substrate shows an interplay between the low-energy single-particle excitations in both systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanoscale interfacial friction and adhesion on supported versus suspended monolayer and multilayer graphene.

Using atomic force microscopy (AFM), supported by semicontinuum numerical simulations, we determine the effect of tip-subsurface van der Waals interactions on nanoscale friction and adhesion for suspended and silicon dioxide supported graphene of varying thickness. While pull-off force measurements reveal no layer number dependence for supported graphene, suspended graphene exhibits an increase...

متن کامل

Frictional behavior of atomically thin sheets: hexagonal-shaped graphene islands grown on copper by chemical vapor deposition.

Single asperity friction experiments using atomic force microscopy (AFM) have been conducted on chemical vapor deposited (CVD) graphene grown on polycrystalline copper foils. Graphene substantially lowers the friction force experienced by the sliding asperity of a silicon AFM tip compared to the surrounding oxidized copper surface by a factor ranging from 1.5 to 7 over loads from the adhesive m...

متن کامل

Rewritable ghost floating gates by tunnelling triboelectrification for two-dimensional electronics

Gates can electrostatically control charges inside two-dimensional materials. However, integrating independent gates typically requires depositing and patterning suitable insulators and conductors. Moreover, after manufacturing, gates are unchangeable. Here we introduce tunnelling triboelectrification for localizing electric charges in very close proximity of two-dimensional materials. As repre...

متن کامل

Controllable Nanotribological Properties of Graphene Nanosheets

Graphene as one type of well-known solid lubricants possesses different nanotribological properties, due to the varied surface and structural characteristics caused by different preparation methods or post-processes. Graphene nanosheets with controllable surface wettability and structural defects were achieved by plasma treatment and thermal reduction. The nanotribological properties of graphen...

متن کامل

Substrate effect on thickness- dependent friction on graphene

Using friction force microscopy, we have investigated the frictional behavior of graphene deposited on various substrates as well as over micro-fabricated wells. Both graphene on SiO2/ Si substrates and graphene freely suspended over the wells showed a trend of increasing frictionwith decreasing number of atomic layers of graphene. However, this trend with thickness was absent for graphene depo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanotechnology

دوره 21 13  شماره 

صفحات  -

تاریخ انتشار 2010